МЕТОДЫ МОДЕЛИРОВАНИЯ ЭФФЕКТИВНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ЗЕМЕЛЬНЫМИ РЕСУРСАМИ В СЕЛЬСКОМ ХОЗЯЙСТВЕ С ПРИМЕНЕНИЕМ ИНСТРУМЕНТОВ АЛГЕБРЫ НЕЧЁТКИХ МНОЖЕСТВ
ПОЛУЛЯХ ЮРИЙ, АДАДИМОВА ЛЮБОВЬ
DOI 10.32651/253-103
УДК 332.64; 332.68+004.89
Выпуск № 3, Март 2025 г., статья № 14, стр. 103-113
Рубрика: Проблемы агроэкономических исследований
Ключевые слова: ЗЕМЕЛЬНЫЕ РЕСУРСЫ, ЭФФЕКТИВНОЕ УПРАВЛЕНИЕ, МЕТОД, НЕЧЁТКОЕ КОГНИТИВНОЕ МОДЕЛИРОВАНИЕ, МАТРИЦА, КОНЦЕПТ
Аннотация: В смоделированной эффективной системе управления земельными ресурсами применены и получили существенное развитие разработанный ранее авторами метод нечётко-когнитивного моделирования, отличный от наиболее распространённых методов парных сравнений В.Д. Силова и Т. Саати тем, что рекомендованные ими отрицательно-положительные пары концептов, применяются лишь как частный случай в модели коррекции экономического поведения субъектов земельного рынка, где действительно встречаются негативные и позитивные действия, события и др. Но и в этом случае используются не транзитивно замкнутые матрицы, а простая операция алгебры нечётких множеств «дополнение». Это позволяет воспользоваться ещё рядом операций над нечёткими множествами, чтобы получить достаточно интересные состояния (этапы) и параметры проектируемых моделей, позволяющие существенно обогатить инструментарий анализа моделируемых процессов, расширить диапазон и конкретизировать возможные управленческие решения по ходу и в процессе завершения моделирования. Этот методический приём позволил существенно упростить формирование нечётко-когнитивных моделей (НКМ), что дало возможность при достижении поставленной цели исследования разработать, наряду с основной базовой моделью, несколько частых, раскрывающих отдельные аспекты построения эффективной системы управления земельными ресурсами в сельском хозяйстве. Разработанные и применённые в процессе исследования варианты (методы) постепенного усложнения требований к экспертной (первичной) информации для построения НКМ могут быть использованы в других аналогичных исследованиях. Методический приём поэтапного усложнения (от простого к сложному) может быть полезен при подборе и оценке компетенции приглашённых экспертов и предметных исследователей: простое сопоставление двух концептов; два варианта задания исходной информации («доля i-того концепта в парном взаимодействии» и «сила межфакторного взаимодействия»); то же с добавлением показателя вероятности событий; полноценная нечётко-когнитивная матрица. Используемый в процессе исследования расчётно-аналитический механизм может быть использован для машинного обучения в целях развития искусственного интеллекта (ИИ).
Авторы:
Полулях Юрий Георгиевич, Поволжский научно-исследовательский институт экономики и организации агропромышленного комплекса – обособленное структурное подразделение Федерального исследовательского центра «Саратовский научный центр Российской академии наук»
Ададимова Любовь Юрьевна, Поволжский научно-исследовательский институт экономики и организации агропромышленного комплекса – обособленное структурное подразделение Федерального исследовательского центра «Саратовский научный центр Российской академии наук»
Библиографическая запись:
На бумажную версию:
Полулях, Ю. Г. Методы моделирования эффективной системы управления земельными ресурсами в сельском хозяйстве с применением инструментов алгебры нечётких множеств / Ю. Г. Полулях, Л. Ю. Ададимова. – DOI 10.32651/253-103. – Текст : непосредственный // Экономика сельского хозяйства России. – 2025. – № 3. – (Проблемы агроэкономических исследований). – С. 103-113.
На электронную версию:
Полулях, Ю. Г. Методы моделирования эффективной системы управления земельными ресурсами в сельском хозяйстве с применением инструментов алгебры нечётких множеств / Ю. Г. Полулях, Л. Ю. Ададимова. – DOI 10.32651/253-103. – Текст : электронный // Экономика сельского хозяйства России. – 2025. – № 3. – (Проблемы агроэкономических исследований). – С. 103-113. – URL: http://esxr.ru/article/4645 (дата обращения – 20.04.2025). – Режим доступа: для авториз. пользователей.
Скачать
Оформите электронную подписку и сможете скачать эту статью прямо сейчас!
METHODS FOR COGNITIVE MODELING OF AN EFFECTIVE LAND USE MANAGEMENT SYSTEM
DOI 10.32651/253-103
Issue № 3, 2025, article № 14, pages 103-113
Section: Problems of agroeconomic researches
Keywords: LAND RESOURCES, EFFECTIVE MANAGEMENT, METHOD, FUZZY COGNITIVE MODELING, MATRIX, CONCEPT
Abstract: In the modeled effective land management system, the method of fuzzy-cognitive modeling developed earlier by the authors was applied and significantly developed, different from the most common methods of pair comparisons V.D. Silova and T. Saati topics, that the negative-positive pairs of concepts recommended by them are used only as a special case in the model for correcting the economic behavior of land market entities, where negative and positive actions, events, etc. really occur. But even in this case, not transitively closed matrices are used, but a simple operation of the algebra of fuzzy sets "complement." This allows us to take advantage of a number of operations on fuzzy sets in order to obtain quite interesting states (stages) and parameters of the designed models, which make it possible to significantly enrich the tools for analyzing simulated processes, expand the range and concretize possible management decisions during and during the completion of modeling. This methodological technique made it possible to significantly simplify the formation of fuzzy-cognitive models (NKM), which made it possible to develop, along with the main basic model, several frequent ones that reveal certain aspects of building an effective land management system in agriculture. The options (methods) developed and applied during the study for gradually complicating the requirements for expert (primary) information for constructing the NKM can be used in other similar studies. The methodological technique of phased complication (from simple to complex) can be useful in the selection and assessment of the competence of invited experts and subject researchers: a simple comparison of two concepts; two options for setting the initial information ("the share of the i-th concept in the pair interaction" and "the strength of the inter-factor interaction"); the same with the addition of an event probability indicator; a full-fledged fuzzy-cognitive matrix. The computational and analytical mechanism used in the research process can be used for machine learning in order to develop artificial intelligence (AI).
Authors: Poluliakh IUrii Georgievich, Adadimova Liubov IUrevna